Robust Odometry using Sensor Consensus Analysis

نویسندگان

  • Andrew W. Palmer
  • Navid Nourani-Vatani
چکیده

Odometry forms an important component of many manned and autonomous systems. In the rail industry in particular, having precise and robust odometry is crucial for the correct operation of the Automatic Train Protection systems that ensure the safety of high-speed trains in operation around the world. Two problems commonly encountered in such odometry systems are miscalibration of the wheel encoders and slippage of the wheels under acceleration and braking, resulting in incorrect velocity estimates. This paper introduces an odometry system that addresses these problems. It comprises of an Extended Kalman Filter that tracks the calibration of the wheel encoders as state variables, and a measurement pre-processing stage called Sensor Consensus Analysis (SCA) that scales the uncertainty of a measurement based on how consistent it is with the measurements of the other sensors. SCA uses the statistical z-test to determine when an individual measurement is inconsistent with the other measurements, and scales the uncertainty until the z-test passes. This system is demonstrated on data from German Intercity-Express highspeed trains and it is shown to successfully deal with errors due to miscalibration and wheel slip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Odometry Algorithm Using an RGB-D Sensor and IMU in a Highly Dynamic Environment

This paper proposes a robust visual odometry algorithm using a Kinect-style RGB-D sensor and inertial measurement unit (IMU) in a highly dynamic environment. Based on SURF (Speed Up Robust Features) descriptor, the proposed algorithm generates 3-D feature points incorporating depth information into RGB color information. By using an IMU, the generated 3-D feature points are rotated in order to ...

متن کامل

Image-Based ICP Algorithm for Visual Odometry Using a RGB-D Sensor in a Dynamic Environment

This paper proposes a novel approach to calculate visual odometry using Microsoft Kinect incorporating depth information into RGB color information to generate 3D feature points based on speed up robust features (SURF) descriptor. In particular, the generated 3D feature points are used for calculating the iterative closest point (ICP) algorithm between successive images from the sensor. The ICP...

متن کامل

Robust Dead Reckoning: Calibration, Covariance Estimation, Fusion and Integrity Monitoring

To measure system states and local environment directly with high precision, expensive sensors are required. However, highly accurate system states and environmental perception can also be achieved using data fusion techniques and digital maps. One crucial task of multi-sensor state estimation is to project different sensor measurements into the same temporal, spatial and physical domain, estim...

متن کامل

Purposive Sample Consensus: A Paradigm for Model Fitting with Application to Visual Odometry

RANSAC (random sample consensus) is a robust algorithm for model fitting and outliers’ removal, however, it is neither efficient nor reliable enough to meet the requirement of many applications where time and precision is critical. Various algorithms have been developed to improve its performance for model fitting. A new algorithm named PURSAC (purposive sample consensus) is introduced in this ...

متن کامل

A Robust Method for Ego-Motion Estimation in Urban Environment Using Stereo Camera

Visual odometry estimates the ego-motion of an agent (e.g., vehicle and robot) using image information and is a key component for autonomous vehicles and robotics. This paper proposes a robust and precise method for estimating the 6-DoF ego-motion, using a stereo rig with optical flow analysis. An objective function fitted with a set of feature points is created by establishing the mathematical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018